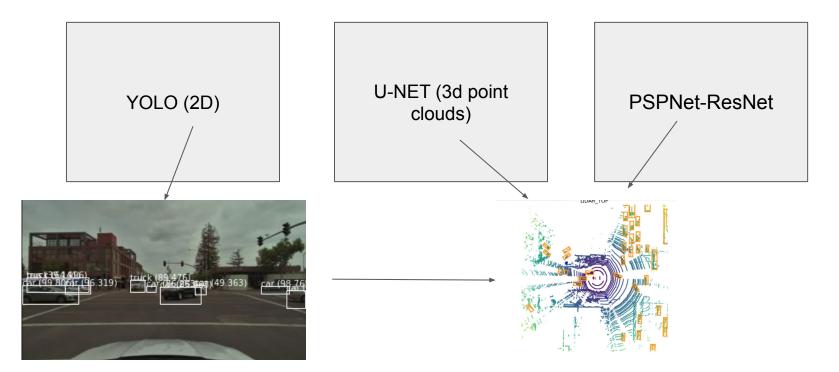
3D Object Detection for Autonomous Vehicles

Team 8 Elham Amini Yashaswini Joshi What is the problem and why it is important?

Autonomous Vehicles are the significant part of the future **safe**, **green**, **affordable** and **accessible** transportation.

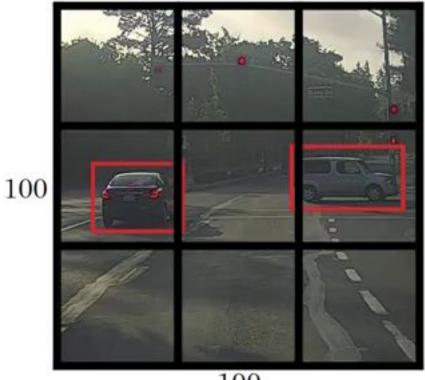
3 steps to have a level5 AV:


- 1. Perception
- 2. Prediction
- 3. Planning

Dataset: <u>Lyft Perception dataset kit</u> Sample dataset (573 MB) Training dataset (58 GB) Testing and Validation dataset (58 GB)

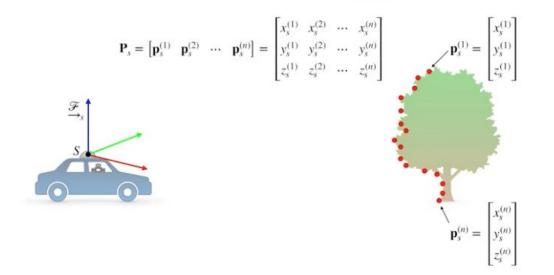
The goal is to build a model to percept objects around an AV and learn more about practical parts of deep learning.

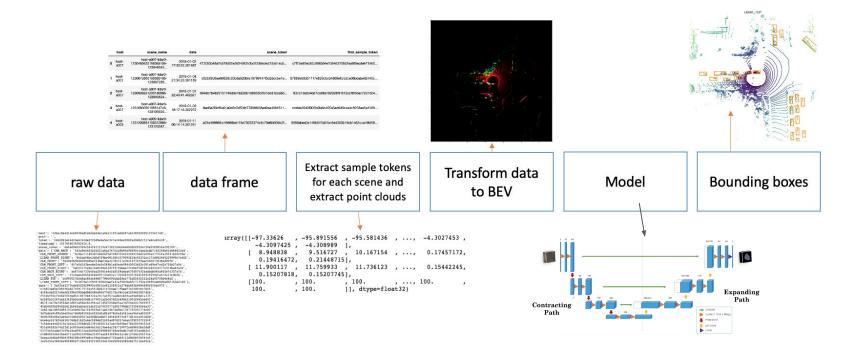
Approach



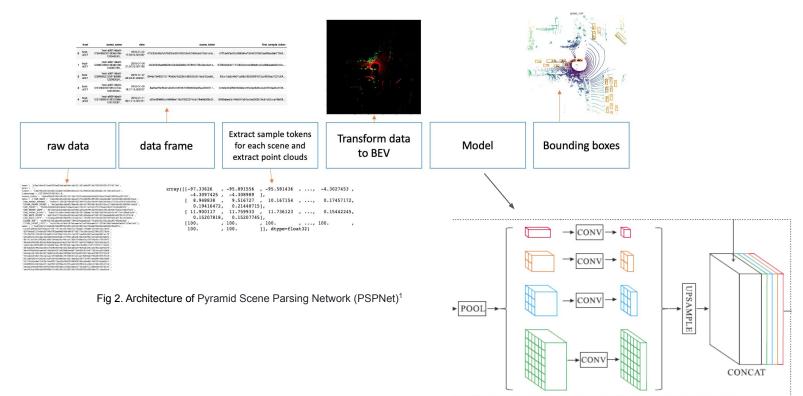
YOLO

Data captured by camera (2D)

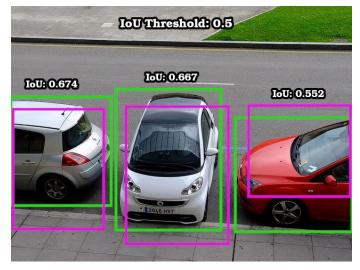

Fast with high accuracy but 2D


100

Point Clouds Captured by Lidar



U-Net


PSPNet-ResNet Model

¹ Pyramid Scene Parsing Network by Zhao et al, https://arxiv.org/abs/1612.01105

Evaluation and Findings

Model	Number of Epochs	MAP	MAP - car	MAP - pedestrian	MAP - animal
U-Net	1	0.09	0.46	0.00021	0.0
U-Net	15	0.01	0.50	0.0027	0.0
PSPNet-ResNet	15	0.09	0.71	0.0134	0.0

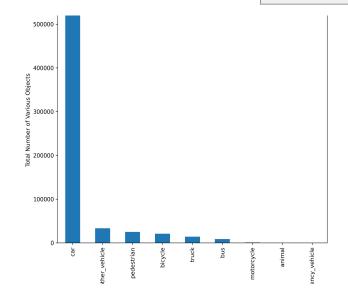
Conclusions

Cloud points gathered from Lidar sensor are very important in AV 3D object detection:

- They do not get affected by adverse weather conditions
- They do not rely on light for object detection

But:

They are not reliable for detecting small objects such as animals, or any smaller class in the training set.


Possible Solutions and Future Works

- Using both images and point clouds to detect objects (They are complementary)
- Having separate pretrained model for each class such as animals, pedestrians,...and fine tune model with autonomous vehicle data
- Training model with more epochs
- Using ensemble models (combination of various trained model) for prediction

Problems

- Related to data:
 - Downloading Dataset
 - Understanding the data
 - Transferring data to GL
 - Installing some of the packages
 - The dataset we have is highly imbalance.

21% Upload	ding				?	×
		() ()	87		Cancel	
		2			Minimize	•
File:	C:\User	s\yashu\Down	loads\train.tar			
Target: /home/yjoshi/					Once finished:	
					Stay idle	\sim
Time left:		3, 12:04:50	Time elapsed:	5:58:27		
Bytes transferred: 12,994 MB Speed: 160 KB/s				Speed (KB/s):		
					Unlimited	~

First two scenes of the data:

```
[{'log_token': 'da4ed9e02f64c544f4f1f10c6738216dcb0e6b0d50952e158e5589854af9f100',
'first_sample_token': '24b0962e44420e6322de3f25d9e4e5cc3c7a348ec00bfa69db21517e4ca92cc8',
'name': 'host-a101-lidar0-1241893239199111666-1241893264098084346',
'description': '',
'last_sample_token': '2346756c83f6ae8c4d1adec62b4d0d31b62116d2e1819e96e9512667d15e7cec',
'nbr_samples': 126,
'token': 'da4ed9e02f64c544f4f1f10c6738216dcb0e6b0d50952e158e5589854af9f100'},
{'description': '',
'first_sample_token': '3b30673b9d944ec6058ef5a8debb4c0a6fe075bca7076e06cf42a2bc10dc446e',
'log_token': '0a6839d6ee6804113bb5591ed99cc70ad883d0cff396e3aec5e76e718771b30e',
'name': 'host-a006-lidar0-1236037883198113706-1236037908098879296',
'token': '0a6839d6ee6804113bb5591ed99cc70ad883d0cff396e3aec5e76e718771b30e',
'last_sample_token': '5ec01e4634ca91751311eaafb45a9196ba8616bf05edc85593aff158db653a34',
'nbr_samples': 126}]
```

Information inside one sample

{'next': 'c2ba18e4414ce9038ad52efab44e1a0a211ff1e6b297a632805000510756174d', 'prev': '', 'token': '24b0962e44420e6322de3f25d9e4e5cc3c7a348ec00bfa69db21517e4ca92cc8'. 'timestamp': 1557858039302414.8, 'scene token': 'da4ed9e02f64c544f4f1f10c6738216dcb0e6b0d50952e158e5589854af9f100', 'data': {'CAM BACK': '542a9e44f2e26221a6aa767c2a9b90a9f692c3aee2edb7145256b61e666633a4', 'CAM FRONT ZOOMED': '9c9bc711d93d728666f5d7499703624249919dd1b290a477fcfa39f41b26259e', 'LIDAR FRONT RIGHT': '8cfae06bc3d5d7f9be081f66157909ff18c9f332cc173d962460239990c7a4ff', 'CAM FRONT': 'fb40b3b5b9d289cd0e763bec34e327d3317a7b416f787feac0d387363b4d00f0', 'CAM FRONT LEFT': 'f47a5d143bcebb24efc269b1a40ecb09440003df2c381a69e67cd2a726b27a0c', 'CAM FRONT RIGHT': '5dc54375a9e14e8398a538ff97fbbee7543b6f5df082c60fc4477c919ba83a40', 'CAM BACK RIGHT': 'ae8754c733560aa2506166cfaf559aeba670407631badadb065a9ffe7c337a7d', 'CAM BACK LEFT': '01c0eecd4b56668e949143e02a117b5683025766d186920099d1e918c23c8b4b', 'LIDAR TOP': 'ec9950f7b5d4ae85ae48d07786e09cebbf4ee771d054353f1e24a95700b4c4af', 'LIDAR FRONT LEFT': '5c3d79elcf8c8182b2ceefa33af96cbebfc71f92e18bf64eb8d4e0bf162e01d4'}, 'anns': ['2a03c42173cde85f5829995c5851cc81158351e276db493b96946882059a5875', 'c3c663ed5e7b6456ab27f09175743a551b0b31676dae71fbeef3420dfc6c7b09', '4193e4bf217c8a0ff598d792bdd9d049b496677d5172e38c1ed22394f20274fb', 'f543b455c7066d7054ed5218670b4432a3fc7a0f57cadb0cb59aa96e8dd1a135', '6ef405e1f47a4a234f0bfeeb559d61c70031af6c47bf2e499a31002f845cd403', 'db7413e79e7df6de53d801e96e26c494caf1d5b709da85aa7bf04e42c76609f5', '40eb44f0b586f2b41fb962adca2c1de351b70f3577a382798db2735564566a33', 'lab21da1d6f6d88107a5b067ba1f40929a47ae414b72e8bc17d774f281776cb2'. '3d7bdcb0c99a5ba50cc74b9b9194fe4f2fdfa82a078c8afa561eec9afad052f9', '4e00f88a86a5ae6a015d0a58027a280db2aebf13d4626875c877d23cca553d8d', '64e6ea3476f64420c76db21b2fa4ec589def2c05ad97d2574ea63f8f0f7f22c9'. '7c5adce44d2415e1e2aa21006d6d22393466015a7ae14bf6bef76b28409c93c8' '851a84fd2e74affd12c893e445ad66ec3a519ae6a2f4371887fe4d9605be5dd8' '53370e3cade07cf9a34adf9212ec2b05b028989087d3ce9edb15d03f4acbb2c1' 'c5d8880344636ee5711a095f1090ba31057aa26238f94c1a16b137d4c25637ce' '5eeaa3e4ba898b43996288c6895e8cc38ab3ba6cf7f2ae68112d8b0b936f81e5' 'lec543ca38666e906886b71f662f45f1605344410e26962a58668a7511ba65ce'. 'b46fe64538510e926250a400f261c85d32eae75ef8b54afc9e089185362140ed' 'd924771fb6bc5ab4adb00053e9f0ea3396df9caebd24b3c25ec9223a90ebe4a2'. 'fled482b393935fa0e7d7b4ad3facb731d9f37bd38df500a134049cba776d4ae'. '20d79c70f6b730dc04416e8b8b1e75c38ee1c10c57a8ca2081a33858ec08944a', 10005 JE J002 FE 2 F01 o FC Fo1 1 o 2 4 7 o 0 0 F0 2 7 2 2 0 F 7 b o 1 2 o F2 o 1 0 0 FC b F o F b F b J0 o 2 2 1

Problems

- Related to models:
 - VoxelNet² Implementation
 - Models failed to predict the small objects, for example pedestrians.

Average per class mean average precision = 0.09416772164775028 ('animal', 0.0) ('bicycle', 0.0012601587242598114) ('bus', 0.0537961585349724) ('car', 0.5057703547292053) ('motorcycle', 0.0010937927262783702) ('other_vehicle', 0.18122473782388235) ('pedestrian', 0.002728630097923848) ('truck', 0.007467940545480116)

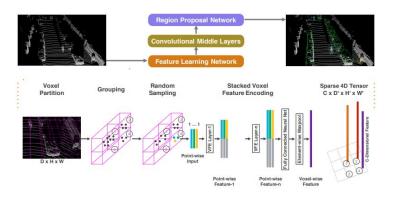
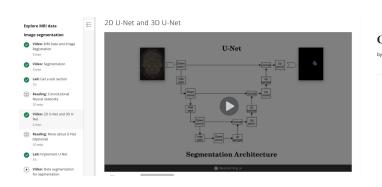


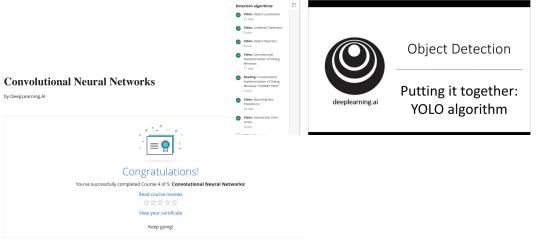
Fig 2. Architecture of VoxelNet²

What we learned Our Journey...

Object detection using torchvision

Greg Teichert CSCAR Consultant


Perform Real-Time Object Detection with YOLOv3


by Coursera Project Network

Congratulations!

You've successfully completed Perform Real-Time Object Detection with YOLOv3

Convolutional Neural Networks > Week 3 > YOLO Algorithm

Prev

Questions?